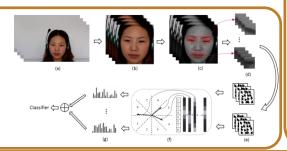
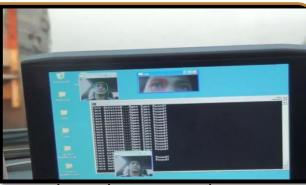


Apathy diagnosis by analyzing facial dynamics in videos


S L Happy

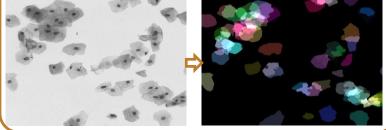
Collaborators: Antitza Dantcheva, Abhijit Das, Radia Zeghari, Philippe Robert, and François Bremond


STARS team, **INRIA** Sophia Antipolis 2nd April 2019

My research

(Emotion recognition)

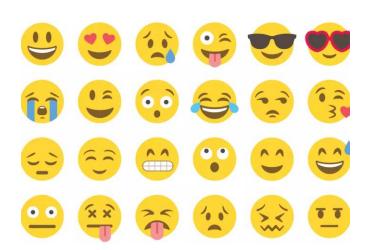



(Driver drowsiness detection system)

Original Adapted (Hyperspectral image classification)

(Cancer Cell cytoplasm segmentation)

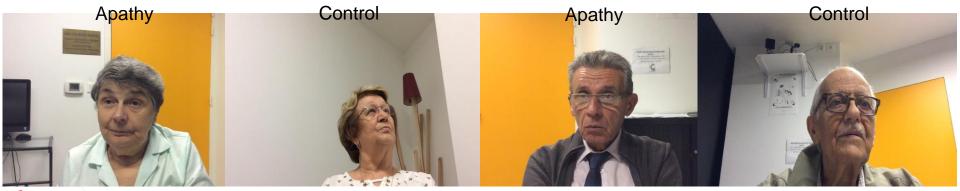
(Activity recognition)


Apathy

- Apathy is a symptom of the majority of neurocognitive, neurodegenerative, and psychiatric disorders
- Quantitative reduction of activity in behavioral, cognitive, emotional, or social dimensions
- Symptoms:
 - reduced emotional response
 - lack of motivation
 - change of behavior
 - limited social interaction

Apathy

Non-Apathy



Challenge

Activity classification

Apathy classification

Objective

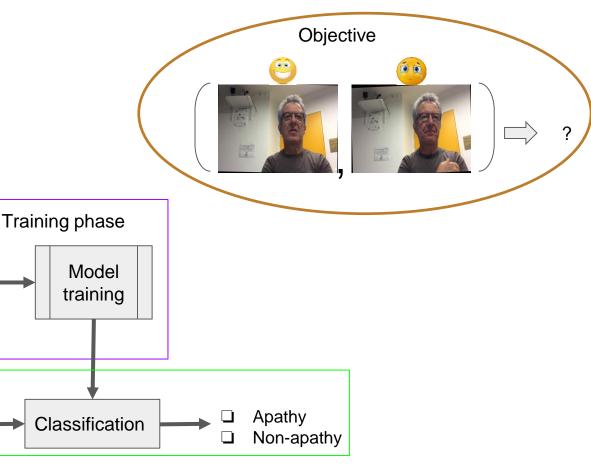
- Assisting clinicians in the apathy diagnostics based on facial behavior analysis
- Given the facial videos, predict whether the patient is apathetic or not.

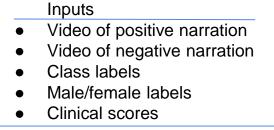
Positive narration Negative narration **Apathy** Yes No Yes

("tell me a positive/negative event of your life in one minute")

Part 1: Feature \Longrightarrow Regression \Longrightarrow Classification

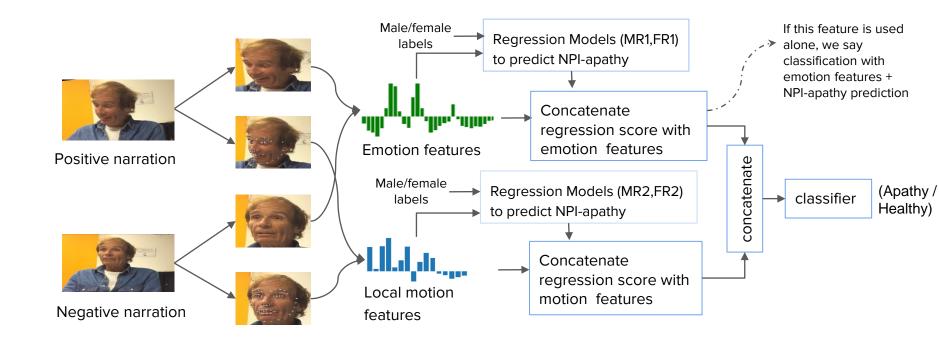
Data


- Total subjects: 45
- The patient-clinician interview involves
 - the collection of demographic details
 - Age, **gender**, ...
 - a standardized neuropsychological assessment
 - Mini mental state examination (MMSE)
 - Neuropsychiatric apathy inventory (NPI-apathy)
 - a short positive and negative experience narration (tell me a positive/negative event of your life in one minute)


Demographic data of patients

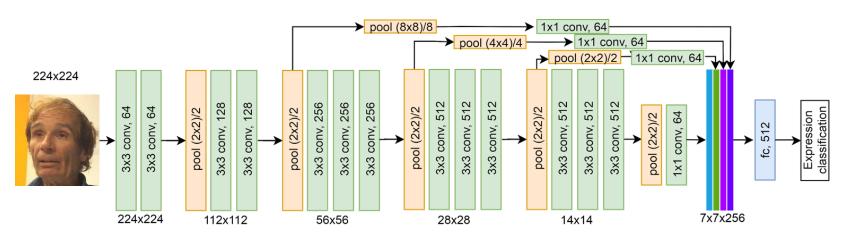
	Number of Patients	Age	MMSE	NPI-Apathy
Apathy	18	73.5 (7.7)	22.6 (3.1)	6.2 (2.6)
Control	27	71.7 (8.8)	25.4 (3.6)	0.4 (0.8)

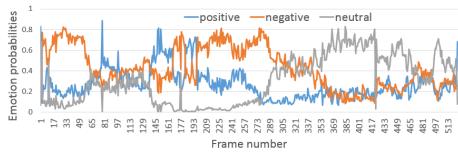
Overall Framework

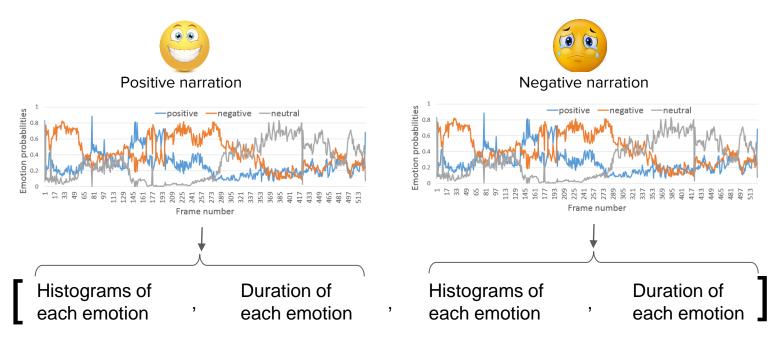


Test phase

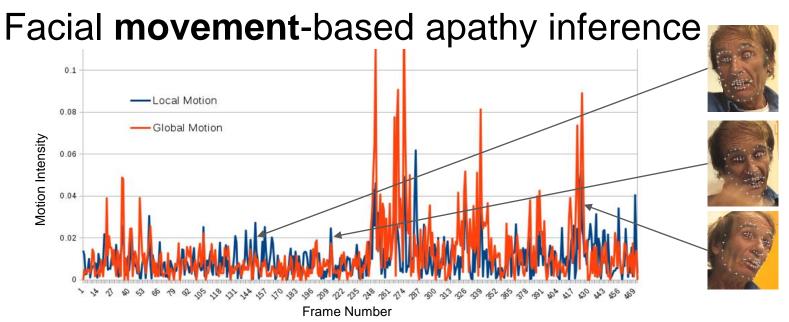
- Video of positive narration
- Video of negative narration



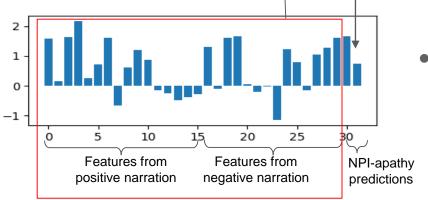

Detailed Framework



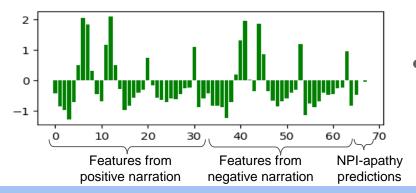
Emotion Recognition



Emotion Feature

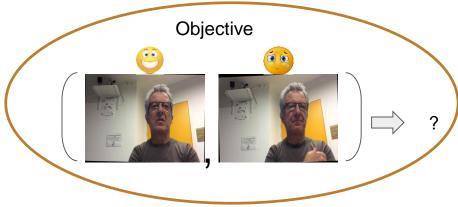


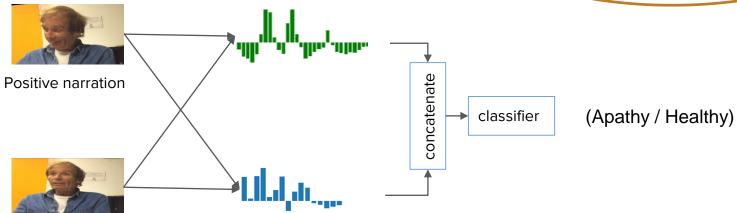
- Global motion: head movement in successive frames
- Local motion: movement of facial parts, such as lips, eyebrows, cheeks, etc.
 - Computed by removing the global motion information from the interior facial landmarks


Emotion and Motion features

Motion features

Movement of facial parts in successive frames are represented in a histogram.


Emotion features



The *expressions* in all frames are represented in a histogram.

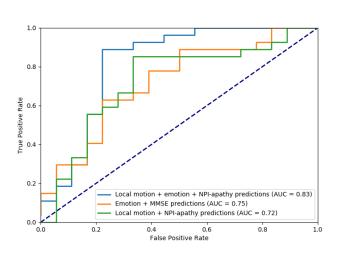
Simplified Test Framework

Negative narration

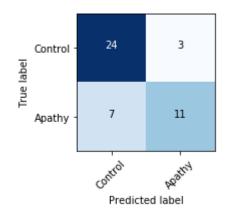
LOSO performances

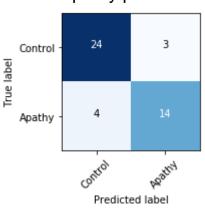
without pos-neg concatenation

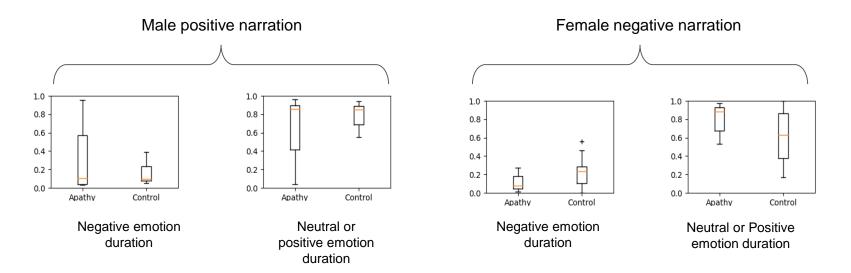
with pos-neg concatenation


Features used	Accuracy	F1-score	AUC	Accuracy	F1-score	AUC
Local Motion Features	58.88	0.505	0.527	57.77	0.555	0.558
Global Motion Features	56.66	0.516	0.523	55.55	0.537	0.537
Local + Global Motion Features	51.11	0.458	0.467	62.22	0.602	0.601
Emotion features	52.68	0.532	0.518	64.44	0.622	0.620
Emotion features + Local Motion Features	53.86	0.526	0.552	77.77	0.757	0.75
Emotion features + Local + Global Motion Features	54.57	0.532	0.537	71.11	0.68	0.676

LOSO performances with pos-neg concatenation


Features used	Accuracy	F1-score	AUC
Local Motion Features + NPI-apathy prediction	73.33	0.722	0.722
Global Motion Features + NPI-apathy prediction	77.77	0.765	0.768
Local + Global Motion Features + NPI-apathy prediction	68.88	0.676	0.678
Emotion features + MMSE prediction	77.77	0.757	0.75
Emotion features + NPI-apathy prediction	66.66	0.649	0.648
Emotion features + Local Motion Features + MMSE prediction	68.88	0.675	0.675
Emotion features + Local Motion Features + NPI-apathy prediction	84.44	0.836	0.833
Emotion features + Local and Global Motion Features + MMSE prediction	68.88	0.660	0.657
Emotion features + Local and Global Motion Features + NPI-apathy prediction	77.77	0.757	0.75


ROC and Confusion matrices


Motion and emotion features combined

Motion and emotion features along with NPI-apathy prediction

An observation

- During positive narration, male subjects with Apathy showed both positive and negative emotions, whereas the control group showed more positive expressions compared to negative expressions.
- During negative narration, female subjects with Apathy showed less negative emotion compared to the control group.

Summary

- First to classify apathy based on facial behavior analysis
- Observation cues:
 - variation of facial expressions
 - facial movements
- Regression models to estimate the clinical scores
- Accuracy: 84%

To be presented at:

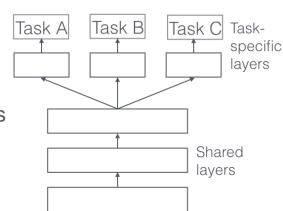
S L Happy, Antitza Dantcheva, Abhijit Das, Radia Zeghari, Philippe Robert, and Francois Bremond, "Characterizing the State of Apathy with Facial Expression and Motion Analysis," in *IEEE International Conference on Automatic Face & Gesture Recognition*, 2019 (FG-19).

Download here: https://goo.gl/zXFi38

Part 2: using Multi-task Learning

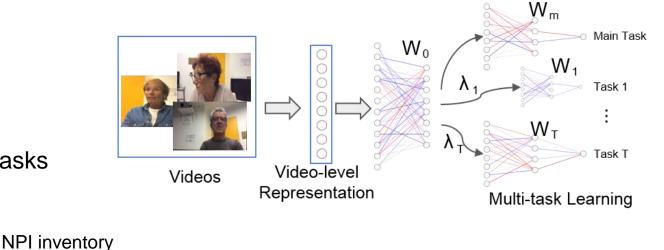
Multi-task learning (MTL)

[joint learning, learning to learn, and learning with auxiliary tasks]

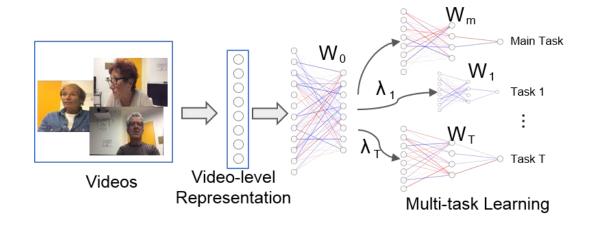

 MTL promotes sharing of model parameters to exploit the shared information across multiple tasks

Advantages:

- Knowledge transfer
- Learns general representation of all tasks
- Learns the relevant and irrelevant features for different tasks
- Joint learning results in a good regularization
- Ignores the data-dependent noise


Limitations:

Negative transfer: sharing parameters with unrelated and dissimilar tasks


Experiment setting

- Main task
 - Apathy classification
- Auxiliary regression tasks
 - 1. MMSE
 - 2. NPI-apathy
 - 3. NPI-anxiety
 - 4. NPI-depression
 - 5. NPI-total
 - 6. clinical dementia score (CDR)
 - 7. IA-affect
 - 8. IA-initiative
 - 9. IA-interest

apathy inventory

Multi-task Learning

$$\underset{\mathbf{W}_{0}, \mathbf{W}_{m}, \{\mathbf{W}_{t}\}_{a=1}^{T}}{\operatorname{arg \, min}} \sum_{i=1}^{N} \mathcal{L}(y_{i}^{m}, f(\mathbf{x}_{i}; \mathbf{W}_{0}, \mathbf{W}_{m})) + \sum_{a=1}^{T} \sum_{i=1}^{N} \lambda^{a} \mathcal{L}(y_{i}^{a}, f(\mathbf{x}_{i}; \mathbf{W}_{0}, \mathbf{W}_{a}))$$

$$\underset{\mathbf{W}}{\operatorname{arg\,min}} \quad \mathcal{L}^m + \sum_{a=1}^T \lambda^a \mathcal{L}^a$$

(Choose λ based on prior knowledge)

Objective

• MTL:

$$\underset{\mathbf{W}}{\operatorname{arg\,min}} \quad \mathcal{L}^m + \sum_{a=1}^T \lambda^a \mathcal{L}^a$$

- Our Objective (MTL+): $\underset{\mathbf{W},\{\lambda^a\}_{a=1}^T}{\arg\min} \ \mathcal{L}^m + \sum_{a=1}^T \lambda^a \mathcal{L}^a$
- (avoid negative transfer) learn the relatedness of the auxiliary tasks to the main task
- avoid trivial solution $\lambda^a = 0$, $\forall a$ (nullifying loss incurred by auxiliary tasks)

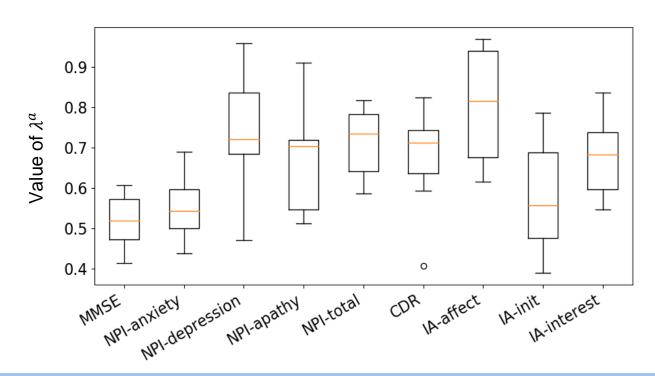
Proposed Method

- Initialize $W_{i,j} \sim U \left| -\sqrt{1/n}, \sqrt{1/n} \right|$ and $\lambda^a = 1, \forall a$
- Weight update by back propagation (several epochs)

$$\mathbf{W} \longleftarrow \mathbf{W} - \eta_1 \frac{\partial \mathcal{L}}{\partial \mathbf{W}}$$

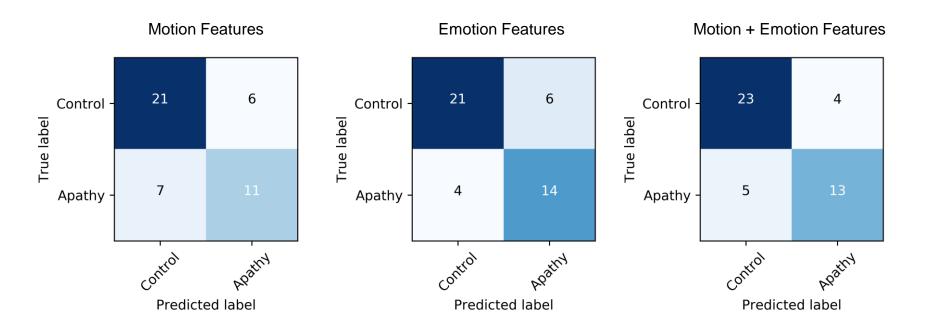
Penalize λ^a intermittently in the same manner

$$\lambda^a \longleftarrow \lambda^a - \eta_2 \mathcal{L}^a \qquad \text{(because } \tfrac{\partial \mathcal{L}}{\partial \lambda^a} = \mathcal{L}^a \text{)}$$
 Stopping criteria (to avoid over-fit the main task)


$$\frac{k.\mathsf{med}_{j=t-k}^t E_{val}^a(j)}{\sum_{j=t-k}^t E_{val}^a(j) - k.\mathsf{med}_{j=t-k}^t E_{val}^a(j)} > \epsilon$$

Performance

Features used	Accuracy	F1-score
MTL with Motion Features	62.22	0.582
MTL with Emotion features	66.66	0.638
MTL with Emotion + Motion Features	71.11	0.716
MTL+ with Motion Features	71.11	0.679
MTL+ with Emotion features	77.77	0.776
MTL+ with Emotion + Motion Features	80.00	0.786



How much are the tasks related?

Confusion Matrices

Summary

- Less accurate than the previous model
 - Probably due to less sample size, deep learning models could not learn well
 - Could improve the model performance with more data
- Learns the relatedness of different tasks/channels

Accuracy	80%
F1-score	0.786
Precision	0.825
Recall	0.816

Thank you

